Vol.**11**, Special Issue.**1**, pp.**134-140**, November **2023** ISSN: 2347-2693 (Online) Available online at: www.ijcseonline.org

Research Paper

Measure Underachievement's in the Space of Livelihoods through Artificial Intelligence

Soumya Sengupta^{1*}^(b), Dharmpal Singh²^(b)

^{1,2}Dept. of CSE, JIS University, Kolkata, India

*Corresponding Author: ssg747@gmail.com

Abstract: Ensuring a sustainable livelihood to the larger counts of the population is the most challenging agenda of any developing country. So this work wants to quantify the level of under achievements of different economies in the field of sustainable livelihood. The contribution of influencing variables of under-achievement and contributing variables to achievement in the construction of under achievement livelihood space is also determined under this work. The interaction between these two types of variables and their juxtaposed effects are evaluated through the use of artificial neural network. Finally this method of artificial intelligence is used to achieve a self-sustained monotonic high rate of development. The whole work is presented through a set theoretic approach which is followed by the testing of the same. It is expected that the application of neural network in the process of self-sustained growth of sustainable livelihood is unique in academic discourses.

Keywords: Artificial Intelligence, Sustainable livelihood, Graph theory, Artificial Neural Network, Sustainable Livelihood, Under achievement.

1. Introduction

A person's livelihood refers to their means of securing the basic necessities like food, water, shelter and clothing. Human livelihood comprises of the capabilities, assets and activities required for a descent living. This livelihood is sustainable when it becomes capable to cope with and to recover from stresses and shocks (DFID, 2000). This very idea of Sustainable Livelihood constitutes the basis of different Sustainable Livelihood Approaches and has been adapted by different development agencies such as the Department for International Development, UK (DFID). The DFID has developed a 'Sustainable Livelihood Framework' (SLF) which is one of the most widely used livelihood (1997) . Petersen et.al. (The Sustainable frameworks Livelihoods Approach, From а psychological perspective, 2010) has discussed about sustainable livelihood framework to eradicate poverty. The sustainable livelihood thinking began to influence development practices since 1990's. United Nation Development Programme (UNDP, 2017) is one of the early participants as well as contributors of this conceptual framework. This Livelihood framework encompasses the skills, assets (both material and social) and the approaches which are used by individuals and communities to survive.

2. Related Work

The term sustainable livelihood started to surface in the academic literature with the works of Chambers and Conway

(Sustainable rural livelihoods: practical concepts for the 21st century, 1992). Since 1991 a voluminous research appeared following this. Subsequently, Lasse Krantz developed an approach of sustainable livelihood (SL) for (Krantz, 2001) . This study has poverty reduction attempted to go beyond the conventional definitions and approaches to poverty eradication. The basic idea of the SL approach is to start with a broad and open-ended analysis of the constraints in (poor) people's current livelihoods. Leigh Anderson et.al. (Microcredit, Social Capital, and Common Pool Resources, 2002) have presented a conceptual scheme for understanding the impact of common pool resources on sustainable livelihood. They have observed that impacts on common pool resources are posited to occur through changes in household production and consumption. They have also observed that enhanced human and social capital can improve sustainable livelihood through better environmental outcomes.

But it appears that quantification of sustainable livelihood indicators as well as components are very inadequate. Agenlen et.al. (Arild Angelsen, 2012) have discussed that research on livelihood in developing countries suffer from proper methods and problems in implementations. The results do not reflect the ground realities. This vacuum in livelihood research can easily be covered through the concept of artificial intelligence (AI). Nilson et.al. have tried to provide a better understanding of the role of human and Artificial Intelligence (Human-Level Artificial Intelligence? Be Serious!, 2005) in the organization decision making process. Here authors have tried to apply Artificial Intelligence as a rooted decision tree for many possibilities. Tin Miller (Explanation in Artificial Intelligence: Insights from the Social Sciences, 2017) has applied Artificial Intelligence in social sciences. This study has produced outcomes that can design and implement intelligent agents those are truly capable of providing explanation to people.

On the basis of the existing studies it appears that the research on sustainable livelihood has failed to deliver desired results due to the absence of proper research methods. Naturally the policies to mitigate the human hardship is also failing increasingly. This problem in the academic discourses can well be solved through the ideas of artificial intelligence as developed as the tools of soft computing. The artificial intelligence techniques optimize the decisions about sustainable livelihood in a multi dimensional framework. The modern computational techniques as discussed here will also help to achieve sustainable development goals as well as sustainable livelihood. This new techniques may help us to explain the differential outcomes of different economies in achieving sustainable livelihood. These techniques can help us to understand the spatial, geographical, historical reason in the existence of acute resource constraints. In this respect modern computer aided technology can create a conducive atmosphere show the correct path. Thus the specific objectives of this study are.

3. Objectives

- Firstly, to construct an under-achievement index in the sustainable livelihood space.
- Secondly, to cluster the economies on the basis of their under-achievements to find the under-lying histrogeographical patterns of economy wise underachievements.
- Thirdly, to locate the direct as well as indirect effects of influencing factors as well as component variables on the composite under achievement space with the help of artificial intelligence.
- Fourthly, to find a self-sustained process to maintain and develop sustainable development.

Methodology 4.

This work is based on secondary data published by many reputed institutions like World Bank, UNDP etc. Sustainable livelihood is determined through the domains published by Department of Foreign and International Development, UK. Eventually the economies within the livelihood space are clustered on the basis of their under-achievements. These clusters are used to determine the spatial and histological influences on the intensities of under-achievements. Multiple regression analysis is used to trace the significance of different influencing variables which may have influence on the under achievement index. Simple statistical tools are used to quantify the extent of influence of influencing as well as component variables. Then the significance of influencing factors are statistically tested. Finally the influence of different influencing factor on the cluster are determined and presented diagrammatically. The idea of Artificial Neural Network has been used to come to the conclusion.

5. Algorithm

The Artificial Neural Network as used in this model is assumed to have l^{st} layers where set of layers $L=\{L_1, L_2\}$ L_2, L_3, \dots, L_1 . It is assumed that there are m key elements to achieve sustainable developments, thus j elements and n economies. Here L1 consist of J subsets where

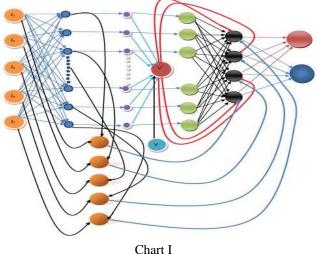
 $J{=}\{j_i\,\}$, where i=1,2,3,....n

And $j_i = \{j_p^i\}$ where p=1,2,3,4....215

In layer 2 the achievement of the n economies are determined through

 $J{=}\{\bullet\} \to O_p$

Where $O_p = \{ d_{p1}^*, d_{p2}^*, d_{p3}^* \dots d_{pn}^* \}$


Where O_p is a n dimensional radar representation, and p=1,2,3,4...,215, i=1,2,3,4... and $p\neq i$.

 d_{p1}^* is the achievement of the pth perspective in the key element.

Let A_p is the area of polygon of the pth perspective formed through d_{p1}^* . Naturally A_p is the achievement space as demonstrated by pth economy.

Subsequently in layer 3 under achievement space U_p is developed where

 $[O^* - O_p] \rightarrow U_p$

The above stated model is represented through the following neural network.

This U_p is distributed over C, where C={C_g}, g=1,2,3,4...n and Cg can be expressed as clusters constructed on the basis of some exogenous considerations.

In the under achievement space of a particular economy gets matched with the interval as defined by the cluster wise boundaries. So if U_p falls within the interval [$C_g^L C_g^L$]. In other words $[O^* - O_p] \rightarrow [C_a^L, C_a^L]$.

The next layer V is formed where $V = \{V_h\}, h = 1, 2, 3, 4...p$. These V_h are some arbitrary selected influencing variables which may have significant relationship with U_{p.} To find the significance of these influencing factors Ordinary Least Square regression can be applied at error α .

Let, V^* is the set of significant variable influencing U_p . Thus $V^* \subseteq V.$

In different layer the relative importance of the elements of V^* i.e. $\{V_q^*\} \in V^*$ are assisted over C.

Finally Z is formed where $Z = \{ Z_q \}$, where Z_q shows the relative position of different economies with respect to the significant influencing factors towards sustainable livelihood. Thus integrated network structure can create instance help to the policy maker to achieve sustainable livelihood by simply imputing the observation about the influencing variables.

Alternatively, I_i is the set of relative importance of d_i over p perspective.

Here, $I_i = \{ D_{ig} \}$ Where $I_{ig} = \{ I_{ip} \}$ Where $I_{ip} = \frac{d_{ip}}{U_p}$

Thus in C_g the relative importance if i th domain is

$$RI_{ig} = \sqrt[7]{\prod^{i} \frac{w_{ip}}{U_{p}}}$$

Or $F_{ig} = \log RI_{ig} = \log_{i} \sum_{i} \frac{d_{ip}}{U_{p}}$
And $F_{j} = \sqrt[g]{\prod^{g} F_{ig}}$
And $K = \{F_{j}\}$

Testing 6.

In a j dimensional sustainable livelihood apace a j axis radar diagram will consist of 360°. Through SAS method the inter domain triangles are determined and finally the area of the j dimensional radar is calculated. Here it is assume that the consecutive inter axis angles are equal. Here j is 5, so the radar is represented through a pentagon line one as represented bellow.

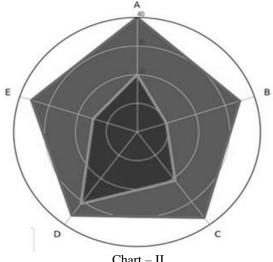
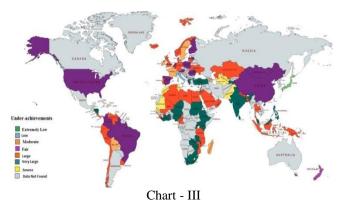



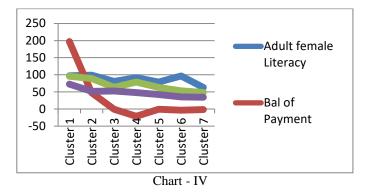
Chart - II

On the basis of the model it is observed that the lowest and highest levels of under achievement in the global livelihood space are 15893.2845 and 21507.327 respectively. This spread of data is distributed over 7 clustered with equal class intervals. These are depicted through tabular forms as Appendix - 1.

An interesting finding about the cluster wise distribution of geographical space is depicted through the following map.

Interestingly, no distinct geographical or historical pattern on the under-achievement has been observed. In the next layer these under achievement levels of all the economies are regressed over a set of explanatory variables. Other than the components of sustainable livelihood as accepted in this work. Thus the regression equation is represented through the following form.

$U_P = 20013.77$	– 19.93 FemLit ^{**} – 1.067	x 10 -008 BOP** -
16.15 HumRig	ht ^{**} + 22.76 CorrPer [*]	
(1818.006)	(9.289)	(.000)
(5.956)	(13.565)	
(.000)	(.035)	(.009)
(.008)	(.098)	


Here FemLit means adult female literacy rate, BOP means balance of payment, HumRIght means human right and CorrPer means corruption perception index. The descriptive statistics of this regression analysis is presented in Appendix-2.

In the next step the importance of significant influencing variables on each cluster is determined. These levels of importance of each significant influencing variable in each cluster is determined through the geometric mean of the said influencing variables. The cluster wise importance of influencing variables is depicted bellow.

Table 1 : Cluster wise importance of significance variables				
	Adult Female Literacy	Balance of Payment	Human Right	Corruption Perception Index
Cluster 1	97	197.0493925	96	73
Cluster 2	99.0	47.51532892	89	52
Cluster 3	80.714285 71	-0.307547435	63.57142857	53
Cluster 4	91.454545 45	-21.02497627	78.73333333	47.90909091

Cluster 5	79.051282 05	-0.507883278	62.88372093	42.69230769
Cluster	96.846153	-3.458053112	53.12903226	35.5
6	85			
Cluster	63	-1.573390124	48.77777778	34.4444444
7				

This tabular information is represented through the following diagram.

Again the same operation is undertaken to determine the cluster wise influence of component variables as accepted in this analysis to achieve sustainable livelihood. These importance of component variables are calculated through geometric mean using equal weight. The following table shows the findings.

	Table 2: Cluster wise importance of component variables				
	Financial Human Social Natural Physical				Physical
	Capital	Capital	Capital	Capital	Capital
Clust	40.100341	95.45828	93.35467	45.87803	
er 1	48	968	134	228	1.15E-05
Clust	4.8090705	86.93611	72.78792	44.96469	100.00000
er 2	96	269	707	642	05
Clust	1.4752774	84.49173	84.43999	66.58571	0.0328519
er 3	35	952	359	348	38
Clust	9.1937821	78.89840	79.51696	55.37841	0.8761361
er 4	39	753	739	459	07
Clust	1.9911053	68.27659	75.32348	49.51026	0.0890139
er 5	73	083	837	213	55
Clust	1.5813170	56.72295	67.15063	47.83878	0.0495345
er 6	43	089	834	927	93
Clust	0.5856124	50.81654	59.48865	38.24544	0.0255166
er 7	61	97	134	8	47

This is shown graphically as follows.

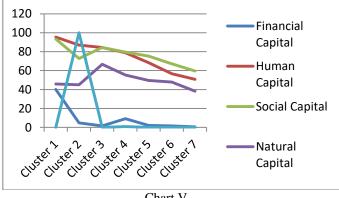


Chart V

Vol.11(1), Nov 2023

At the end of this discussion it can be said that the under achievement in sustainable livelihood can be demonstrated through radar area. Quantification of this radar space can deliver the under achievement index in the sustainable livelihood space. It is found that this under achievement indices of the available economies varied largely. Observed that the clustering of the economies on the basis of their under achievement level delivered results according to our exceptions - the number of countries increased with the downward movement in the hierarchy of clusters. A pictorial illustration of the cluster wise distribution of different economies though projected an interesting diagram but failed to depict any historical or geographical pattern. Regressing the under achievement areas through some exogenously determined explanatory variables it appears that adult female literacy rate, balance of payment, human rights and perceptions about corruption have significant effects on under achievement in sustainable livelihood. Among the significant variables human rights, adult female literacy rate and balance of payment have negative relationship with under achievement in livelihood apace. But interestingly perception about corruption is positively related with under achievement index.

7. **Conclusion and Future Scope**

It is quite expected that corruption leads to adverse selection and moral hazards which can ultimately ensure lower levels of sustainable livelihood. On the other hand cluster wise determination of influence of component variables on under achievement found that human capital, social capital and natural capital played an important role over almost all the clusters to achieve sustainable livelihood. Interestingly it can be said without any hesitation that the achievement of sustainable livelihood needs simultaneously improvement of natural capital, social capital and human capital. These findings do not contradict with the findings of the influence of the exogenous causal variables. So finally it can be said that a push on any set of variables, influencing variables or contributing variables can create both way causal movement and create infinite loop of development to sustain human livelihood. This whole process is depicted through a compact neural network in this work. The application of neural network like this analysis can open new dimensions in livelihood research.

Data Availability

This work is based on secondary data published by many reputed institutions like World Bank, UNDP etc.

Conflict of Interest

In our research paper, we rigorously assessed and addressed potential conflicts of interest to ensure the integrity and impartiality of our findings. All authors have disclosed any relevant financial, personal, or professional relationships that could influence the research outcomes, upholding transparency and credibility in our study.

Funding Source

We have not received any financial support, funding or any type of grants. This work is completely self finance based research work.

Authors' Contributions

Author 1: Soumya Sengupta is the principal researcher for this work, responsible for data collection, algorithm development, calculations, analysis, and manuscript preparation for this research paper. It's worth noting that this project is part of a broader research queue, and work on it is still ongoing. The next phase of this research is currently in preparation.

Author 2: Dr. Dharmapal Singh is the Principal Supervisor of this research work. His role encompasses overseeing the overall progress, monitoring, error correction, and contributing to idea generation for the project.

Acknowledgements

We extend our sincere appreciation to The Department of CSE, JIS University, Kolkata for its invaluable support The resources, guidance, and academic environment provided by the university have played a crucial role in the successful completion of this study.

Appendix – 1		
Table 3		
Cluster 1(Value >=15000 to <=16000)		
Country Name	UA Space	
Japan 15893.2845		
Source: Calculated by the authors		

Table 4		
Cluster 2 (Value >16000 to <=17000)		
Country Name UA Space		
Italy 16703.37801		
Source: Calculated by the authors		

Table 5		
Cluster 3 (Value >17000 to <=18000)		
Country Name	UA Space	
Azerbaijan	17899.56027	
Bolivia	17980.59823	
France	17810.10294	
Ireland	17579.01072	
Madagascar	17336.99739	
Qatar	17484.21204	
Sweden	17579.71249	
Source: Calculated by the authors		

Table 6		
Cluster 4 (Value >18000 to <=19000)		
Country Name	UA Space	
Austria	18517.6245	
Brazil	18289.44515	
China	18037.96967	
Colombia	18356.67086	
Spain	18868.33659	
Finland	18362.57887	
Guyana	18110.46353	
Latvia	18602.96225	
Maldives	18377.15113	
Mongolia	18585.39217	
Netherlands	18352.99531	

New Zealand	18597.09003
Poland	18821.4077
Romania	18929.64609
United States	18733.20449
Source: Calculated by the authors	

Table 7		
Cluster 5 (Value >19000 to <=20000)		
Country Name	UA Space	
Belgium	19520.75779	
Bangladesh	19862.45543	
Chile	19150.2098	
Cameroon	19894.74765	
Costa Rica	19239.53215	
Germany	19524.81352	
Denmark	19191.38789	
Algeria	19215.47477	
Ecuador	19291.11174	
Egypt, Arab Rep.	19951.75309	
United Kingdom	19800.98274	
Indonesia	19971.68245	
Iceland	19130.28672	
Jamaica	19369.73867	
Jordan	19942.92856	
Kazakhstan	19426.59461	
Kuwait	19286.17881	
Libya	19714.46295	
Lithuania	19664.75385	
Mexico	19693.5563	
Mali	19078.90552	
Malta	19846.69281	
Mozambique	19922.1177	
Mauritius	19794.31586	
Norway	19057.26483	
Nepal	19808.80084	
Oman	19728.79619	
Panama	19409.18858	
Peru	19936.25008	
Papua New Guinea	19287.39803	
Portugal	19934.13248	
Paraguay	19020.43684	
Saudi Arabia	19853.04502	
Singapore	19933.00835	
Sierra Leone	19642.19405	
Thailand	19465.32809	
Timor-Leste	19223.18288	
Tonga Trivida d and Taba an	19986.38129	
Trinidad and Tobago	19846.45003	
Tanzania	19826.63878	
Ukraine	19504.19811	
Uruguay	19037.36669	
Venezuela, RB	19239.38856	
Source: Calculated by the authors		

Table 8		
Cluster 6 (Value >20000 to <=21000)		
Country Name	UA Space	
Cote d'Ivoire	20058.20823	
Cyprus	20332.86555	
Ethiopia	20812.70805	
Ghana	20023.49821	
Greece	20004.46569	
Honduras	20209.51651	
India	20501.42434	
Israel	20594.07224	
Kenya	20635.79857	
Lebanon	20542.22449	
Liberia	20662.8181	
Sri Lanka	20241.85726	
Luxembourg	20054.91861	
Moldova	20491.82608	

Montenegro	20021.62795
Malawi	20806.39281
Malaysia	20464.07309
Namibia	20095.66848
Niger	20806.90824
Nigeria	20604.89678
Nicaragua	20471.02282
Philippines	20518.11469
West Bank and Gaza	20360.3111
Rwanda	20111.92945
Sudan	20330.65767
Solomon Islands	20497.36669
Tajikistan	20836.64433
Turkey	20281.14891
Uganda	20086.8169
South Africa	20976.6988
Zambia	20021.80961
Zimbabwe	20740.67971
Source: Calculated by the aut	hors

Та	ble 9
Cluster 2 (Value >21000)	
Country Name	UA Space
Haiti	21507.32749
Lesotho	21128.49092
Morocco	21289.83252
Mauritania	21364.39641
Pakistan	21187.75859
Senegal	21339.33984
El Salvador	21240.3925
Turkmenistan	21251.90849
Tunisia	21262.81464
Source: Calculated by the authors	

Table 10: ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.		
	Regression	29939461.444	12	2494955.120	3.443	.000b		
1	Residual	52905328.080	73	724730.522				
	Total	82844789.524	85					

a. Dependent Variable: UAI

b. Predictors: (Constant), KOF, SexR, BOP, Colony, PolInst, FemLit, HumRight, LifeExp, CorrPer, RiskInd, YearofSch, PCGDP.

Appendix- 2						
Table 11: Descriptive Statistics						

	Mean	Std. Deviation	Ν	
UAI	19808.0640	987.24089	86	
SexR	1.0266	.26926	86	
PCGDP	14595.0581	18091.50786	86	
LifeExp	71.3698	7.13024	86	
YearofSch	7.9605	2.63011	86	
Colony	.5814	.49622	86	
FemLit	79.6512	22.24821	86	
BOP	732390186.5842	25452720840.48409	86	
RiskInd	4.0233	1.48274	86	
PolInst	3555	.81718	86	
HumRight	55.1512	25.11644	86	
CorrPer	38.5698	13.06773	86	
KOF	62.3259	11.37657	86	

Table 12 : Summar	y
-------------------	---

Model	R	R Square	Adjusted	R	Std. Error of the Estimate
			Square		
1	.601 ^a	.361	.256		851.31106

a. Predictors: (Constant), KOF, SexR, BOP, Colony, Pollnst, FemLit, HumRight, LifeExp, CorrPer, RiskInd, YearofSch, PCGDP

Table 13						
Μ	lodel	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
	(Constant)	20013.774	1818.006		11.009	.000
	SexR	-434.229	573.429	118	757	.451
	PCGDP	019	.013	350	-1.505	.137
	LifeExp	-11.527	22.429	083	514	.609
	YearofSch	89.419	81.383	.238	1.099	.275
	Colony	339.972	212.132	.171	1.603	.113
1	FemLit	-19.934	9.289	449	-2.146	.035
	BOP	-1.067E-008	.000	275	-2.702	.009
	RiskInd	99.230	134.456	.149	.738	.463
	PolInst	57.560	198.130	.048	.291	.772
	HumRight	-16.153	5.956	411	-2.712	.008
	CorrPer	22.764	13.565	.301	1.678	.098
	KOF	26.665	19.179	.307	1.390	.169

References

- [1]. DFID. Department for International Development. UK : s.n., 2000.
- [2]. www.gov.uk. www.gov.uk. [Online] 1997. https://www.gov.uk/government/organisations/department-forinternational-development.
- [3]. The Sustainable Livelihoods Approach, From a psychological perspective. Elsemarie Kappel Petersen, Michelle Lind Pedersen. s.l.: University of Aarhus, June 2010, The Sustainable Livelihoods Approach.
- [4]. UNDP. Application of the Sustainable Livelihoods Framework in Development Projects. s.l. : United Nations Development Programme, **2017**.
- [5]. Sustainable rural livelihoods: practical concepts for the 21st century. Robert Chambers, Gordon Conway. 1992, IDS Discussion, pp.296, 1992.
- [6]. Krantz, Lasse. The Sustainable Livelihood Approach to Proverty Reduction. The Sustainable Livelihood Approach to Proverty Reduction. s.l. : Swedish International Developmenent Cooperation Agency, pp.1-44, 2001.
- [7]. Microcredit, Social Capital, and Common Pool Resources. C.LeighAnderson, LauraLocker. 1, s.l. : Elseviar Science Ltd, 2002, World Development, Vol.30, pp.98-105, 2002.
- [8]. Arild Angelsen, Helle Overgaard Larsen, Carsten Smith Olsen. Measuring Livelihoods and Environmental Dependence Methods for Research and Fieldwork. London: s.n., 2012.
- [9]. Human-Level Artificial Intelligence? Be Serious! Nilsson, Nils J. 2005, American Association for Artificial Intelligence, pp. 68-75.
- [10]. Explanation in Artificial Intelligence: Insights from the Social Sciences. Miller, Tim. 2017, Artificial Intelligence.
- [11]. John Morton, Nicholas Meadows. Pastoralism and sustainable livelihoods: An emerging agenda. Pastoralism and sustainable livelihoods: An emerging agenda. s.l. : Natural Resources Institute, University of Greenwich, 2000.
- [12]. Tourism as a sustainable livelihood strategy. Teresa C.H. Tao, Geoffrey Wall. s.l. : Elsevier, , Tourism Management, pp.90-98, 2009.
- [13]. Sustainable livelihoods and people's vulnerability in the face of coastal hazards. JC Gaillard, Emmanuel A. Maceda, Elodie Stasiak, Iwan Le Berre, Maria Victoria O. Espaldon. s.l.: Springer Science, Journal of Coastal Conservation, June, pp.119-129, 2009.
- [14]. Quantum multidimensional color images similarity comparison. Ri-Gui Zhou, Ya-Juan Sun. 2014, Quantum Information Processing, pp.1605-1624, 2014.

AUTHORS PROFILE

Soumya Sengupta - Research Scholar, Department of Computer Science and Engineering, JIS University, Kolkata.

Dr.Dharmpal Singh – Professor and Head of the Department of Computer Science and Engineering, JIS University, Kolkata.

